
Logical Fuzzing

Richard Johnson | switech@microsoft.com

Welcome

 Introduction
 Agenda

 The Business of Fuzzing
 Fuzzing Technology
 Architecting a Framework
 Bennu Concept Tool

Fuzzing As We Know It

 Fuzzing is a method of software testing

 A high volume of exceptional data is sent to
various interfaces of a target to locate faulty
program logic

 Simple in concept, complex in practice
 Hundreds of fuzzers have been written

 Fuzzing has held up in practical testing
 Many thousands of bugs have been identified

From a Business
Perspective

Fuzzers are very cheap and very
effective!Fuzzers are responsible for

70% of the bugs Microsoft
patched in 2006

Fuzzers are responsible for
the majority of the “month
of” bugs

Fuzzers are responsible for
the IFRAME bug, the
.printer bug, etc

Fuzzers are responsible for
70% of the bugs Microsoft
patched in 2006

Fuzzers are responsible for
the majority of the “month
of” bugs

Fuzzers are responsible for
the IFRAME bug, the
.printer bug, etc

Identifying flaws in software
is critical to the reliability and
security of our information
systems

Security critical bugs are very
expensive to fix in deployed
products

Fuzzers produce repeatable
results useful for regression
testing

Fuzz testing is part of the SDL
best practices

Comparing
Methodologies
 Manual Data Flow Analysis

 Can be performed on any form of code
 Produces an undefined number of bugs
 Manual efforts are not repeatable or scalable
 Very expensive and limited source of engineers

 Static Data Flow Analysis
 Can target classes of bugs
 Automated and repeatable
 High false positive rate
 Lacking effective algorithms

 Dynamic Data Flow Analysis
 Can target classes of bugs
 Automated and repeatable
 Solves some problems with static analysis
 Lacking effective algorithms*

int main (int argc, char
**argv)
{
 FOO_STRUCT foo;
...
 foo.val = strdup(argv[1]);
 foo.sz = strlen(foo.val);
...
 vuln(&foo);
}

void vuln (struct *foo)
{
 char buf[STATIC_SIZE];
...
 strncpy(buf, foo->val, foo-
>sz);

}

int main (int argc, char
**argv)
{
 FOO_STRUCT foo;
...
 foo.val = strdup(argv[1]);
 foo.sz = strlen(foo.val);
...
 vuln(&foo);
}

void vuln (struct *foo)
{
 char buf[STATIC_SIZE];
...
 strncpy(buf, foo->val, foo-
>sz);

}

Fuzzing Technology

Initial Public Offering

 Barton Miller, et al “An Empirical Study of the Reliability of
UNIX Utilities”, 1990

 Introduced “fuzz”, the first
dumb fuzzer

 Fuzzed with unstructured, random data

 Targeted command line argument parsing on 90 console
utilities in 7 UNIX varieties

 Results: 25% – 33% of the utilities tested crashed,
depending on the version of UNIX

“Our approach is not a substitute for a formal

verification or testing procedures, but rather an

inexpensive mechanism to identify bugs and

increase overall system reliability.”

Initial Public Offering

 Miller tried again in 1995 with improvements
 X Windows clients
 Network ports
 Memory exhaustion simulation

 Crashed as many as 40% of the console utilities and 25% X windows clients

 None of the network facing code faulted

“Our 1995 study surprised us ... the continued prevalence of
bugs in the basic UNIX utilities seems a bit disturbing. The
simplicity of performing random testing and its demonstrated
effectiveness would seem to be irresistible to corporate testing
groups.”

Valuable Input

 Miller, inspired by the storm, used
random input data

 Mutation based input performs
transformations on existing protocol
data

 Static lists of values are used to target
common implementation defects and
known classes of bugs

Smarter Fuzzing

 Fuzzing interfaces with unstructured
inputs will yield limited results

 Structured inputs allow for more
effective traversal of program states

 This is where the art of fuzzing
begins

You be the Smart, I’ll be
the Fuzz
 SPIKE, Dave Aitel, 2002

 C language API for data generation and rapid
network client development

 Structured data dynamically defined as blocks
 Relation model for size fields

 Peach Fuzzer Framework, Michael Eddington, 2004

 Object oriented python API
 Improved block based analysis with an

abstracted fuzzing model

You be the Smart, I’ll be
the Fuzz

 Peach Fuzzer Components
 Generators

▪ Primitive or complex block data generators
 Transformers

▪ Static encoders or decoders associated with a
generator

 Protocols
▪ State logic is implemented using generators

 Publishers
▪ Provide a transport for the target protocol

Meanwhile in Academia

 PROTOS, 2002
Functional fuzzing using behavior
models
Master Specification
▪ BNF notation utilized to

describe interaction models
and syntax models

Configuration
▪ Performs operations on the

master specification to derive
a Mini-Simulation model

Communication Rules
▪ Connect the model to

execution environment

PROTOS Mini-Simulation Concept

“A Functional Method for Assessing Protocol Implementation Security”,
Rauli Kaksonen

Meanwhile in Academia

 Entity Modeling
 Describes internal behavior of an entity
 Standards

▪ Specification and Description Language (SDL)
▪ Unified Modeling Language (UML)

 Interaction Modeling
 Describes behavior between two entities
 Standards

▪ Unified Modeling Language (UML)
▪ Tree and Tabular Combined Notation (TTCN)
▪ Message Sequence Chart (MSC)

 Syntax Modeling
 Describes the structure of data exchanged by entities
 Standards

▪ Abstract Syntax Notation One (ASN.1)
▪ Extensible Markup Language (XML)

Behavior Modeling
PROTOS Mini-Simulation Behavior Grammar (TFTP)

PROTOS Mini-Simulation Behavior Tree (TFTP)

Backus-Naur Form (BNF)
▪ Flexible context-free grammar

extension to regular
expressions

▪ Lacking standard notation

Simulation Grammar
▪ Attribute grammar using

modified BNF notation
▪ Tree-based Data Productions
▪ Tags represent callbacks such

as input triggers

Syntax Modeling
PROTOS Mini-Simulation Syntax Grammar (TFTP)

Syntax Grammar
▪ Also uses modified BNF
▪ Tree-based Type Productions

Evaluation
▪ Transforms input grammar to

output grammar
▪ Engine traverses input tree,

executing rules on subtrees
▪ Semantic Rules evaluate data
▪ Communication Rules

implement I/O

State Traversal
PROTOS Mini-Simulation Path Representation

Path Finding
▪ Paths are used to access

elements of the grammar
▪ Masks can be used as an

optimized path representation

<transfer>.0.<read transfer>.1.<reads>.1.!down.<LAST-BLOCK>

Dynamic Whiteboxing

 Scalable, Automated, Graph Executution
(SAGE)
“Automated Whitebox Fuzz Testing”, Godefroid, Levin, Molnar
2006

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) abort();
}

void top(char input[4])
{
 int cnt = 0;
 if (input[0] == ‘b’) cnt++;
 if (input[1] == ‘a’) cnt++;
 if (input[2] == ‘d’) cnt++;
 if (input[3] == ‘!’) cnt++;
 if (cnt >= 3) abort();
}

▪ Runtime state of a recorded
session is stored for analysis

▪ Symbolic execution gathers
input constraints from
conditional statements

▪ Solution given by known-good
input data is negated and
solved again

▪ Generational vs Depth-First
Search (DFS) algorithms

What’s Missing?

 Abstraction
 Existing behavior model research is not being utilized

 Automation
 Current technology not fit for production use
 Manual processes introduce inconsistent results

 Unification
 Commonalities in desired functionality have not been

assessed
 Lack of a common platform prevents useful integration

of existing research tools

Architecting a Fuzzing
Framework

Fuzzer Engines

 Fuzzer Engines can be classified by features:
 Input Generation

▪ Random or Mutation or Static
 Data Model

▪ Unstructured or Structured
 Behavior Model

▪ Stateless or Stateful

 The desired platform should support the
creation of both simple and complex fuzzers

A Note About Input
Generation
 Reproducibility is crucial

 Multiple passes of data generation is ideal
to target known classes of bugs first

 Fuzzers should be able to run for an infinite
time but cover the critical space quickly

 Extended model for generation sequencing
would be ideal

Fuzzer Development
Phases

Target Profiling

 Manual Analysis
 Protocol Specifications

 Static Analysis
 Type and Symbolic Debug information
 Execution Flow Graphs
 Data Flow Graphs

 Dynamic Instrumentation
 Interface discovery
 Indirect execution and data flow

 Sample input data
 File harvesting
 Traffic Analysis

Data Modeling

 Notation for behavior modeling should be abstract
enough to represent both data and behavior

 ASN.1 is cumbersome and not human readable,
and cannot model behavior.

 PROTOS’s modified BNF grammar looks highly
capable

 XML serialization is widely supported making it a
good option

Behavior Modeling

 PROTOS interaction model is robust
and useful

 New research is on-going in using
XML to represent state models
 “XML Graphs in Program Analysis”,

Anders Møller, et al
 GXL Schema

Testing and Analysis

 Target Instrumentation
 Debugger Engine

 Logging
 Callbacks and Exception Handling

 Result Analysis
 Analysis using standard debugging Tools
 Visualization for manual analysis

Bennu:
A Concept
Tool

http://www.globalegyptianmuseum.org/detail.aspx?
id=13824

Bennu Goals

 State of the Art
 Identify and use the best research concepts available

for fuzz testing

 Flexible & Reusable
 Framework should be able to be used to create any of

the types of fuzzers in common use today
 New fuzzers should have access to previous models

 Intelligent
 Use profiling information when present
 Do not require any special information to execute

Bennu Goals

 Approachable
 Users should not need to write much code or

understand how internal models work

 Customizable
 Target Profiling and Testing Analysis should

be pluggable

 Scalable
 Distributed testing should be possible

Assisted Target Profiling

 Static analysis engine powered
by Phoenix*
▪ Symbols
▪ Types
▪ Imports
▪ Control Flow
▪ Data Flow

 Dynamic analysis engine
powered by Microsoft Debug
Engine (dbgeng.dll)

 Run-time compiled Target
Analyzers written in C# perform
analysis functions with the static
and dynamic engines

Assisted Target Profiling

 Static analysis engine powered
by Phoenix*
▪ Symbols
▪ Types
▪ Imports
▪ Control Flow
▪ Data Flow

 Dynamic analysis engine
powered by Microsoft Debug
Engine (dbgeng.dll)

 Run-time compiled Target
Analyzers written in C# perform
analysis functions with the static
and dynamic engines

Assisted Data Modeling

 XML Data Model
▪ Structured template

definitions
▪ Type specification
▪ Extended relationship model

 Developed in cooperation
with Mike Eddington,
supported by Peach 2.0

Assisted Data Modeling

 XML Data Model
▪ Structured template

definitions
▪ Type specification
▪ Extended relationship model

 Developed in cooperation
with Mike Eddington,
supported by Peach 2.0

Assisted Behavior Modeling

 XML Model
 Evaluations use callbacks
 State model abstraction

currently being developed

 Developed in cooperation
with Mike Eddington,
supported by Peach 2.0

UNDER DEVELOPMENTUNDER DEVELOPMENT

Automated Testing and
Analysis

 Tests executed by Peach
2.0 running on an
embedded Python engine

 Exception handling and
post-run analysis using the
Dynamic Analysis Engine

 Quickly inspect minidump
contents

 View visited code blocks

 Register callbacks for
automated post-run
analysis

Conclusions

 Fuzzing is an increasingly powerful approach to
software security

 Available support libraries are sufficiently robust
to build complex analysis frameworks

 Academic research has revealed technology
possibilities that have yet to be fully realized

 Automating the abstraction of behavior models
provide an ideal area of research for security
engineers

	Slide 1
	Welcome
	Fuzzing As We Know It
	From a Business Perspective
	Comparing Methodologies
	Slide 6
	Initial Public Offering
	Initial Public Offering
	Valuable Input
	Smarter Fuzzing
	You be the Smart, I’ll be the Fuzz
	You be the Smart, I’ll be the Fuzz
	Meanwhile in Academia
	Meanwhile in Academia
	Behavior Modeling
	Syntax Modeling
	State Traversal
	Dynamic Whiteboxing
	What’s Missing?
	Slide 20
	Fuzzer Engines
	A Note About Input Generation
	Fuzzer Development Phases
	Target Profiling
	Data Modeling
	Behavior Modeling
	Testing and Analysis
	Slide 28
	Bennu Goals
	Bennu Goals
	Assisted Target Profiling
	Assisted Target Profiling
	Assisted Data Modeling
	Assisted Data Modeling
	Assisted Behavior Modeling
	Automated Testing and Analysis
	Conclusions

